[ editar artigo]

O despertar da força: o médico no período do homo hybridus

O despertar da força: o médico no período do homo hybridus

Os primeiros dispositivos tecnológicos na medicina, como a radiografia e eletrocardiograma, geraram medo nos profissionais alegando receio quanto ao abandono do exame físico nas avaliações médicas. A internet chegou para todos, bem como um excesso de informações aleatórias, sem um filtro adequado daqueles que não sabem utilizá-la de forma útil e adequada. Os médicos e outros profissionais de saúde se tornaram mais autoconscientes. Um elevado número de estudos de diferentes desenhos e análises estatísticas, sem o mesmo filtro adequado, levam a decisões clínicas subótimas ou falhas.

A ideia de arte da medicina, norteando grande parte das decisões clínicas, traduz-se em conhecimento inconsistente e incompleto, habilidades, treinamento e experiência variáveis e um elevado grau de preconceitos. Consequentemente, acaba gerando uma variação grosseira do cuidar, das decisões clínicas e dos resultados.

A inconsistência na conduta clínica acaba por gerar não só decisões clínicas subótimas ou falhas, traduzindo em maiores impactos na morbidade e no custo atual da doença, mas ainda trazendo maior impacto na morbidade a longo prazo (com falha na prevenção de doenças negligenciadas) e, maior ainda, no custo-saúde do paciente e do sistema de saúde, como um todo.

Com tantas informações na área de saúde, na era do Big Data e Inteligência Artificial (IA), é crucial o uso desses dispositivos para validar uma tomada de decisão clínica mais consistente, baseadas em dados, evidências e valores. Topol, grande influenciador na área, pontua que o uso dessas ferramentas como meio irá contribuir nesses pontos incômodos.

Como relatado em um recente texto da Kamila Liberali, a interface médico-IA conseguirá reduzir as falhas, melhorar a qualidade de vida, personalizar tratamentos, predizer doenças, otimizar custos, racionalizar excessos, acentuar oportunidades, aperfeiçoar a conduta clínica e aumentar a relação humana dicotômica médico-paciente.

O medo relacionado a se os computadores podem superar os humanos é ultrapassado, a questão é como a humanidade adotará esses recursos na prática médica. Os pacientes já estão engajados, algumas instituições de saúde e governamentais já estão fomentando e os profissionais de saúde devem aceitá-la para que a IA alcance a adoção na medicina.

É necessário essa integração entre todos os stakeholders da saúde, do contrário ocorrerá uma multiplicação não sistemática e descontrolada de algoritmos de IA com um insignificante valor agregado, resultando em excesso de referência, diagnóstico e tratamento, bem como elevação dos custos e desconfiança.

O desenvolvimento de algoritmos de IA na medicina requer extração e integração de dados que exigem engenharia, ciência de dados, domínio clínico e padronização e curadoria de dados. Um desafio elementar para o desenvolvimento e a implementação de machine learning (ML) na área da saúde é o acesso a dados confiáveis ​​e bem organizados. Dados clínicos geralmente residem em diferentes sistemas, geralmente bloqueados em um formato proprietário, exigindo software caro adicional para extração. E depois que os dados são liberados de servidores proprietários, os padrões de dados de saúde e os modelos de dados comuns para fins de pesquisa estão longe do ideal, criando trabalho desnecessário para desbloquear o valor nos dados.

Essa tarefa exige especialistas em domínio e pesquisadores que podem ter pouco interesse em fornecer essa importante tarefa de manutenção. Após estabelecer modelos confiáveis, a IA deverá abordar questões do mundo real, de ordem prática, pois uma IA mal projetada poderia piorar analogicamente a sobrecarga de informações e a fadiga cognitiva, como foi o caso da parceria entre a IBM Watson e a MD Anderson.

Para alcançar a adoção, a IA precisará ser uma ajuda invisível, transparente e imparcial, ajudando pacientes e médicos a tomar melhores decisões de maneira mais eficiente e eficaz. É claro que os humanos podem confiar nas máquinas para decisões específicas, como nas viagens aéreas hoje. O software na aviação lutou com os pilotos e venceu - com resultados catastróficos.

A construção da decisão clínica deve se apresentar de maneira híbrida, com médicos que já sabem o modus operandi diante desse cenário, tão bem quanto o que esperar do seu uso, assim revelando uma ferramenta de suporte clínico mais sofisticada. Trabalhando juntos, o método bayesiano do médico pode ser potencializado pela inteligência computacional, que filtram as exageradas informações geradas pelos pacientes.

A IA terá seu clímax na construção de soluções precisas, contextuais e otimamente completo de entendimento de saúde e doença. Olhando ainda mais profundamente o desenrolar desse processo, é sensível que será necessário o fornecimento de supervisão usando a inteligência humana em todas suas peculiaridades, inconsistências e potencial de déficits na consciência situacional e, dessa forma, poder atingir um patamar maior de integração, convergindo inteligências artificial e humana.

Tudo isso, seguindo outro processo, no qual Kamila Liberali chama de ponto de inflexão da IA na saúde, onde os benefícios serão exponenciais. A IA não produzirá aquele sistema médico perfeito que todos sonham, mas se houver essa integração e convergência de inteligências, cuidadosamente projetada e implementada, teremos mecanismos mais sensatos de produzir um sistema melhor.

Texto publicado também neste link.


Leia também:

 


Quer escrever?

Publique seu artigo na Academia Médica e faça parte de uma comunidade crescente de mais de 150 mil médicos, acadêmicos, pesquisadores e profissionais da saúde. Clique no botão "NOVO POST" no alto da página!

Health Innovation League

Academia Médica
Albert Bacelar
Albert Bacelar Seguir

Médico Intensivista, Diarista, Coordenador da UTI no HTL, Instrutor de Simulação Realística em Saúde, Professor de Medicina pela FTC, Professor de Design Thinking em Saúde, Ex-Mergulhador de Resgate, especialista em Gestão, Empreendedorismo e Finança

Ler conteúdo completo
Indicados para você